Application of Bio-inspired Metaheuristics in the Data Clustering Problem
نویسندگان
چکیده
Clustering analysis includes a number of different algorithms and methods for grouping objects by their similar characteristics into categories. In recent years, considerable effort has been made to improve such algorithms performance. In this sense, this paper explores three different bio-inspired metaheuristics in the clustering problem: Genetic Algorithms (GAs), Ant Colony Optimization (ACO), and Artificial Immune Systems (AIS). This paper proposes some refinements to be applied to these metaheuristics in order to improve their performance in the data clustering problem. The performance of the proposed algorithms is compared on five different numeric UCI databases. The results show that GA, ACO and AIS based algorithms are able to efficiently and automatically forming natural groups from a pre-defined number of clusters.
منابع مشابه
Hybrid Bio-Inspired Clustering Algorithm for Energy Efficient Wireless Sensor Networks
In order to achieve the sensing, communication and processing tasks of Wireless Sensor Networks, an energy-efficient routing protocol is required to manage the dissipated energy of the network and to minimalize the traffic and the overhead during the data transmission stages. Clustering is the most common technique to balance energy consumption amongst all sensor nodes throughout the network. I...
متن کاملA Pre-initialization Stage of Population-Based Bio-inspired Metaheuristics for Handling Expensive Optimization Problems
Metaheuristics are probabilistic optimization algorithms which are applicable to a wide range of optimization problems. Bio-inspired, also called nature-inspired, optimization algorithms are the most widely-known metaheuristics. The general scheme of bio-inspired algorithms consists in an initial stage of randomly generated solutions which evolve through search operations, for several generatio...
متن کاملNew Approaches in Metaheuristics to Solve the Truck Scheduling Problem in a Cross-docking Center
Nowadays, cross-docking is one of the main concepts in supply chain management in which products received to a distribution center by inbound trucks which are directly to lead into outbound trucks with a minimum handling and storage costs as the main cost of a cross-docking system. According to the literature, several metaheuristics and heuristics are attempted to solve this optimization model....
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملAn Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem
Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CLEI Electron. J.
دوره 14 شماره
صفحات -
تاریخ انتشار 2011